Testing someone’s VO2max allows you to measure how much oxygen they burn at any given heart rate during exercise

Testing someone’s VO2max allows you to measure how much oxygen they burn at any given heart rate during exercise, giving them the most precise estimation of caloric burn during their workout. By doing so they will not have to pay attention to those calories burnt readings on the treadmills again. Even if losing weight isn’t their thing, or they’re an endurance athlete wanting to measure their cardiovascular fitness level, this is the way to go. By testing it frequently they will be able to monitor the success of their current training program. Given a case study in EXSC 510 in regards to Jordan Smith and why the exercise physiology lab discovered his VO2max was 45ml/kg/min leaves one to believe he is an average middle aged guy (assumed) who is somewhat active. I will start out by explaining how he got to his current exercise tolerance. Then explain how the test could vary if the test was conducted at altitude and Jordan lives at sea-level.
There are many things that are taken into consideration when testing ones VO2max. First, gender is a huge variable. It’s been proven that a males VO2max is typically 40-60% higher than women (Howley & Powers, 2018). The difference being, the variance in bodyweight and lean body mass. Therefore research shows that the average untrained male has a VO2max of about 45ml/kg/min. Secondly, training in different temperatures changes the results. High temperatures lead to two complications, hypothermia and dehydration. Increased body temperature leads to reduced muscle strength, which means the muscle’s capability to contract continually over long periods of time (Howley ; Powers, 2018). High body temperature results a decrease in blood movement to the heart as blood gathers in the extremities. Oxygenated blood can’t get back to the muscles if the heart isn’t getting as much blood. Dehydration causes a reduction in VO2max. In layman’s terms means that the body can’t use oxygen as proficiently to provide energy.
When bringing Jordan back into the equation and seeing his VO2max results are 45ml/kg/min this would make me believe that either he is just an average guy who doesn’t workout much or that he lives at sea-level and his VO2max was tested at a higher elevation.
Stroke volume is a extent of how much blood is put out by the left ventricle of the heart to the other (Howley & Powers, 2018). If we base Jordan’s VO2max on the fact that it was tested at a much higher altitude we can assume that he is much more active than stated previously. VO2 max declines with altitude. A decrease is due to a result amount of cardiac output.
Cardiac output relies on upon stroke volume, because its decreased when at a higher elevation because of the decrease in blood plasma. It’s also been proven that one’s maximal heart rate is recognized when at a higher altitude. Consequently, less oxygen that’s the results in less oxygen getting to the muscles. By not having as much oxygen, your heart rate elevates, which isn’t the same at sea level. When the body is at rest and having a hard time, imagine what happens when they start to exercise.
Even though it seems that strength and the ability to perform brief, powerful activities are not particularly affected by altitude, long-standing aerobic exertion is hindered at higher altitudes. Consequently, powerful efficient training engaged in at higher altitudes must be trained for and will take time. VO2max can definitely be applied as a training tool when someone is wanting to perform at a much higher rate at sea-level. Hence, why a lot of runners train at higher elevations. It can help a competitor increase that highly desirable competitive lead!

Powers, S.K., Howley, T.K. (2018). Exercise Physiology: Theory and Application to Fitness and Performance. New York, New York: McGraw Hill Education.

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!


order now
x

Hi!
I'm Mia

Would you like to get a custom essay? How about receiving a customized one?

Check it out